Machine-learning techniques used to accurately predict battery life
نویسندگان
چکیده
منابع مشابه
Machine Learning Techniques to Predict Software Defect
Machine learning techniques have been dominating in the last two decades. The recently published comprehensive state-of-the-art review (Mohanty et al., 2010) justifies this issue. The ability of software quality models to accurately identify critical faulty components allows for the application of focused verification activities ranging from manual inspection to automated formal analysis method...
متن کاملUsing Machine Learning ARIMA to Predict the Price of Cryptocurrencies
The increasing volatility in pricing and growing potential for profit in digital currency have made predicting the price of cryptocurrency a very attractive research topic. Several studies have already been conducted using various machine-learning models to predict crypto currency prices. This study presented in this paper applied a classic Autoregressive Integrated Moving Average(ARIMA) model ...
متن کاملApplication of Machine Learning Techniques to Predict Software Reliability
In this paper, the authors employed machine learning techniques, specifically, Back propagation trained neural network (BPNN), Group method of data handling (GMDH), Counter propagation neural network (CPNN), Dynamic evolving neuro–fuzzy inference system (DENFIS), Genetic Programming (GP), TreeNet, statistical multiple linear regression (MLR), and multivariate adaptive regression splines (MARS),...
متن کاملIs Demography Destiny? Application of Machine Learning Techniques to Accurately Predict Population Health Outcomes from a Minimal Demographic Dataset
For years, we have relied on population surveys to keep track of regional public health statistics, including the prevalence of non-communicable diseases. Because of the cost and limitations of such surveys, we often do not have the up-to-date data on health outcomes of a region. In this paper, we examined the feasibility of inferring regional health outcomes from socio-demographic data that ar...
متن کاملCombining machine learning and homology-based approaches to accurately predict subcellular localization in Arabidopsis.
A complete map of the Arabidopsis (Arabidopsis thaliana) proteome is clearly a major goal for the plant research community in terms of determining the function and regulation of each encoded protein. Developing genome-wide prediction tools such as for localizing gene products at the subcellular level will substantially advance Arabidopsis gene annotation. To this end, we performed a comprehensi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature
سال: 2019
ISSN: 0028-0836,1476-4687
DOI: 10.1038/d41586-019-01138-1